产品中心PRDUCTS
技术支持RECRUITMENT
TB天博体育变频器主电路设计和计算
2023-09-15 04:04:02
天博体育对于变频器大家应该都不是很陌生,因为现实生活中很常见。 如马上让我们无法释怀的空调,从以前的定频空调到现在的变频空调; 又如洗衣机、冰箱和电梯,等等这些都涉及到我们今天所要聊的变频器。
变频调速器主要用于交流电动机(异步电机或同步电机)转速的调节,具有变频器体积小、重量轻、精度高、功能丰富、保护齐全、可靠性高、操作简便、通用性强等优点。 变频调速是公认的交流电动机最理想、最有前途的调速方案,除了具有卓越的调速性能之外,变频调速还有显著的节能作用,是企业技术改造和产品更新换代的理想调速方式。 变频器作为节能应用与速度工艺控制中越来越重要的自动化设备,得到了快速发展和广泛的应用。
变频器产生的最初用途是速度控制,但目前在国内应用较多的是节能。 中国是能耗大国,能源利用率很低,而能源储备不足。 应用变频调速可以大大提高电机转速的控制精度,使电机在最节能的转速下运行。 风机、泵类负载的节能效果最明显,节电率可达到20%~60%,这是因为风机、泵类的耗用功率与转速的3次方成正比,当需要的平均流量较小时,转速降低其功率按转速的3次方下降。
变频调速除了在风机、泵类负载上的应用以外,还可以广泛应用于传送、卷绕、起重、挤压、机床等各种机械设备控制领域。 它可以提高企业的产成品率,延长设备的正常工作周期和使用寿命,使操作和控制系统得以简化,有的甚至可以改变原有的工艺规范,从而提高了整个设备控制水平。
变频调速很容易实现电动机的正、反转,只需要改变变频器内部逆变管的开关顺序,即可实现输出换相,也不存在因换相不当而烧毁电动机的问题。 变频调速系统启动大都是从低速开始,频率较低,加、减速时间可以任意设定,故加、减速时间比较平缓,启动电流较小,可以进行较高频率的起停。
除了工业相关行业,在普通家庭中,节约电费、提高家电性能、保护环境等受到越来越多的关注,变频家电成为变频器的另一个广阔市场和应用趋势,如带有变频控制的冰箱、洗衣机、家用空调等,在节电、减小电压冲击、降低噪声、提高控制精度等方面有很大的优势。
变频器的主电路如上图所示,主要包括交流电抗器、输入压敏电阻、整流桥、直流电抗器、直流充电电阻、直流电抗器、充电接触器、直流母线电容、电容均压电阻、逆变桥、
平时我们一般都以W为功率单位,那么W和VA之间有什么关系呢? 它们中间需要考虑功率因数λ(cosθ),只有当功率因数为1的时候,1W=1VA,而功率因数不为1的时候,两者就不相等了。 即视在功率S,有功功率P和无功功率Q之间的关系
式中,UAC为三相输入线电压的有效值。 由于母线电容的存在,直流电压一般认为等于输入线UAC
eg.对于15kW的变频器,输出电流为32A,因此变频器输出容量为Po=1.73232380=21kVA,直流母线V,母线A。
一般整流桥很少过载,而且现在的整流管过载能力都比较强,从成本上考虑,所以选取的整流器件甚至可以略小于计
很多时候我们会并联器件来满足所需的电流等级,器件的并联必须降低电流额定值使用,可以参照下面式子选择:
逆变桥计算随着功率半导体的发展,IGBT已经成为当下中大功率变频器逆变电路开关管选取的最佳选择。 再选择IGBT时我们要注意以下几点:
①首先根据变频器载频工作范围及热设计的要求选择一种合适的类型。 选择三种类型IGBT中的一种:
③计算所选IGBT的电流等级、电压等级,该步骤同时也影响了吸收电路的形式选择及结构设计的特点。
考虑到瞬间过电压,IGBT的耐压通常为直流母线电压的两倍。 瞬间过电压受回路杂散电感和IGBT开关速度的影响,所以实际耐压的选择要视回路的杂散电感而定。
式中,UAC是变频器输入电源电压,β为电源电压的波动系数,α为安全系数,Ic为IGBT的额定电流,n为短路时电流冲击的倍数,Ls为杂散电感大小,Cx为吸收电容的大小,VPN为正常工作时母线电压。
电流的选择与最大工作频率,总功耗、冷却方式及环境温度范围都有关系,实际上,Datasheet中给出的电流参数常常在一两种条件下定义,因此总的来讲并不准确适合实际应用,有时会偏差很大。
式中,k为电流的过载倍数,Io为变频器的额定输出电流,Ic为IGBT标称电流值(连续DC)。
由于单只IGBT模块电流容量有限,为了提高载流能力需要对IGBT并联。 由于IGBT具有正的温度系数,温度升高时导通压降会增大,因此本身具有自动均流的特性,并联使用一般不会导致严重的均流问题。
由于IGBT参数分散性,并联使用时需要放大IGBT的容量,IGBT电流需乘以1个降额系数,降额系数按照下式计算:
式中n为并联器件数目,x与器件耐压有关,600V器件:x=0.1; 1200V器件:x=0.15; 1700V器件:x=0.2。
对于IGBT的并联,原则上和二极管并联差不多,在驱动电路方面有更高的要求,希望并联的各个开关管驱动信号一致以保证管子的同时开通和关断。 对此要求各并联的驱动线长
度相同,在各个管子上加装GE板,对驱动信号进行就近调理。 下面给出一个并联驱动的例子,大家可以参考一下:
RE为防止环流电阻,强电端A点和B点通过导线连接,电势有可能不完全相等,这样将在并联驱动电路中产生环流,RE的作用就是限制短路环流,一般取值为0.33Ω。 一般我们都会在栅射极并个电阻RGE,RGE都不能省略,其作用是防止IGBT栅极电荷积累,一般取值是10k~100k。
输入侧必须设计浪涌吸收电路,吸收元件一般采用压敏电阻、气体放电管或安规电容等,整流桥的输出就近安装一只高频无感电容(MKP或CBB81)。 主回路电路图中的的Yd和Cr,压敏电阻的耐压值一般选为820V,整流桥的输出吸收电容Cr与变频器功率有关,一般容值为0.22~2uF,耐压为1600V。
增加快熔。 快熔的熔断时间可达3~5ms比较适合整流桥的保护,并能防止故障的扩大及非常严重的后果(如烧毁变频器等)。 但对于是否增加快熔不同厂商有不同看法,大家可以根据实际需求来做抉择。
电流保护:一般采用电流检测保护(要求整个保护环节响应速度满足元件的规格要求),如快速霍尔电流检测保护,VCE保护等。
驱动脉冲WG3#低电平有效时,B点为低电平。 当IGBT正常开通时,CE间电压较低(一般为1.7~3V),W点电位较低,C点是15V的高电平,则A点经3k和510欧电阻分压得到1个电压约为5V(2+0.7+2),该电压不足以导致反向器翻转,点F保持高电平,三极管不导通,FO为高电平; 若IGBT发生短路故障,CE间电压VCE增大,导致A点电平升高,达到反向器的翻转电平,从而使F点为低,三极管导通,FO输出为低,从而产生故障信号,同时B点也变成高电平,将该IGBT驱动脉冲封锁,达到保护IGBT的目的。 D点到B点的反馈起个增强稳定的作用,去掉影响也不大。
电压保护:一般而言,变频器对瞬时超过模块耐压的过电压没有好的防止方法,超过模块耐压的瞬时过电压很容易导致模块电压击穿损坏。 对母线瞬时过电压一般在母线上并高频吸收电容保护模块。 如主回路电路图中的电容C。 其他的吸收形式如RC吸收、RCD吸收在变频器中都不常用。
慎重选择吸收电路的形式并仔细选择吸收电容的型号、容量、耐压及厂家。 一般耐压选为1600V的CBB电容,电容量跟变频器容量和结构有关,0.47~10uF,大小不等。
上电缓冲及实现缓冲电阻的选择及特点:上电缓冲电阻(主回路中Rc)要求抗冲击能力强。 必须确认电阻的冲击曲线并反复实验验证。 阻值大小由整流桥的型号和滤波电容的容量决定。 阻值大小一般可按流过电阻的电流为整流管电流额定值的2~3倍选取。
通用变频器通常采用交流接触器,一般而言,接触器是按一定的导通电流有效关断的条件下设计的,在变频器的应用中,接触器一般是在没有电流的情况下闭合和断开,因此工作条件比标称条件更好,所以在容量的选取方面可以比较放宽一点。 一般情况,三相并联等于直流环节电流即可。
电源侧交流电抗器电压型通用变频器电网电压交流转变为直流经整流后都经电容滤波,电容器的使用使输入电流呈尖峰脉冲状,当电网阻抗小时,这种尖峰脉冲电流极大,会造成很大的谐波干扰,并使变频器整流桥和电容器易损坏。
当变压器容量大于变频器容量10倍以上,电网配电变压器和输电线的内阻不能阻止尖峰脉冲电流时,当同一电源上有晶闸管设备或开关方式控制功率因数补偿装置时,三相电源不平衡度大于3%时,都要对输入侧功率因数作提高和抑制干扰,都需使用电源侧交流电抗器。
阻抗即可防止突变电压造成接触器跳闸,使总谐波电流畸变下降到原先的44%。 实际使用中为了节省费用,常采用2%阻抗的电感量,但这对环保而言是不好的。 比较好的场合应使用4%阻抗或更大的电抗器。 一般常选用2~4%的压降阻抗,这个 % 是对相电压而言,即:
对于使用者,需考虑电感值和电流值两方面,电流值一定要大于等于额定值,电感值略有大小问题不大,偏大有利于减少谐波,但电压降落会超过3%,使用者还要考虑电源内部
阻抗,电源变压器功率大于10倍变频器功率,而且线路很短的场合,电源内阻小,不仅需要使用输入侧交流电抗器,而且要选择较大的电感值,例如选用4~5%
阻抗的电感量。直流电抗器计算直流电抗器接在滤波电容前,它阻止进入电容的整流后冲击电流的幅值,并改善功率因数、降低母线交流脉动。 直流电抗器在变频器功率大于22KW时建议都要采用,当变频器功
率越大,越应该使用,因为没有直流电抗器时,变频器的电容滤波会造成电流波形严重畸变和进而使电网电压波形严重畸变,而且非常有害于变频器的整流桥和滤波电容寿命。
直流电抗器能有效降低输入电流谐波,提高功率因数。 电感大小选择合理,电感越大,改善功率因素的效果越好,但电感太大,也会增大基波电流的电压降,减小变频器的输入电压,减小了变频器的最大输出功率。
直流电抗器的电感值的选择一般为同样变频器输入侧交流电抗器3% 阻抗电感量的2-3倍,最少要1.7 倍),即
直流母线电解电容计算直流电解电容是变频器成本比重较大的一块。 用于380V通用变频器的直流电解电容一般都是采用两只400V串连来满足536V的耐压值,220V的单相变频器一般使用1只400V即可满足耐压要求。 一般容量选取原则是:100uF/1KVA。 由于电容器规格有限,电容量选取范围可定为85uF~110uF/KVA,单相输入的机型电容量应向上取大一些的值。
制动单元和制动电阻(BD和DBR)小功率制动单元一般在变频器内部,外部只接制动电阻。 大功率、制动单元由另外外接的制动单元接到变频器母线上,当电机制动时,电机的电能反馈回母线,使母线电压升高(我们也称之为泵升电压),升高到一定值时,开通制动单元的开关管,用制动电阻消耗母线上一部分电能,维持母线电压不继续往上升高,使电机能量消耗在制动电阻上而获得制动力矩。 制动单元的导线m,接到变频器的直流母线(P+、N端)要使用双绞线或密排的平行线,导线的截面应不小于电机输电线。
制动电阻的阻值不是随便的,它有一定范围。 太大了,制动不迅速,太小了制动用开关元件很容易烧毁。 一般当负载惯量不太大时,认为电机制动时最大有70%能量消耗于制动电阻,30%的能量消耗于电机本身及负载的各种损耗上,此时,
低频度制动的制动电阻的耗散功率一般为电机功率的(1/4~1/5),在频繁制动时,耗散功率要加大。
有的小变频器内部装有制动电阻,但在高频度或重力负载制动时,内装制动电阻的散热量不足,此时要改用大功率的外接制动电阻。 各种制动电阻都应选用低电感结构的电阻器; 连接线要短; 并使用双绞线或密着平行线; 采用如此低电感措施的原因是为了防止和减少电感能量加到制动管上,造成制动管损坏; 制动电阻值不能过分小; 如果回路的电感大、又电阻小,将对制动管不利,会造成损坏。
以上便是关于变频器主回路的设计和计算的简单介绍,还是要具体问题具体分析。 写着写着没太在意,篇幅有点长,大家可以收藏,有需要的时候可以参考下。
三星首款基于MOSFET冰箱变频器设计采用英飞凌600 V CoolMOS™ PFD7 近日,英飞凌科技股份有限公司 向三星电子股份有限公司 供应具有最高能源效率及最低噪音的功率产品。这些功率器件已经整合在三星最新款的单门式 (RR23A2J3XWX、RR23A2G3WDX) 与对开式 (RF18A5101SR) 变频冰箱中。变频是当代变频器设计中,采用直流转交流的新兴转换趋势。与传统的开/关控制相比,变频能让产品应用更安静平稳地运转,同时也能减少平均耗电量。 为了满足三星对提高效率、降低系统成本和降低噪音量的要求,Digi Touch Cool™、Curd Maestro™采用了英飞凌多款电源解决方案:EiceDRIV
2016年5月10日,德国慕尼黑讯 英飞凌科技股份公司(FSE: IFX / OTCQX: IFNNY)推出性的碳化硅(SiC)MOSFET技术,使产品设计可以在功率密度和性能上达到前所未有的水平。英飞凌的CoolSiC MOSFET具备更大灵活性,可提高效率和频率。它们将有助于电源转换方案的开发人员节省空间、减轻重量、降低散热要求,并提高可靠性和降低系统成本。 英飞凌工业功率控制事业部总裁Helmut Gassel博士指出: 20多年来,英飞凌一直走在开发SiC解决方案的最前列,致力于满足用户对节能、缩减尺寸、系统集成和提高可靠性的需求。英飞凌制造出数百万件含有SiC器件的产品,而我们的肖特基二极管和
从CPU的六个PWM输出端子,到中间缓冲电路,称为逆变脉冲前级电路,驱动电路称为逆变脉冲后级电路,总称逆变脉冲回路。 故障状态: 1、起动操作正常,操作显示面板有正常的输出频率指示,但无三相输出电压; 2、起动操作正常,操作显示面板有正常的输出频率指示,输出三相电压不平衡; 3、一按起动按键,即跳OC故障; 4、运行中跳OC故障; 5、轻载运行正常,带载电机跳动或跳OC故障。 故障实质与检修思路(与故障状态的五种状态相对应): 1、有以下几种因素:a、驱动电路光耦合器输入侧的+5V供电丢失;b、前级脉冲电路的缓冲器损坏;c、CPU的相关控制信号不确定或相关控制引脚损坏;d、故障保护电路误动,使脉冲前级电路被故障信号锁定。 在此处须
0 引言 焦炉车辆由于受到现场环境的限制,其整体结构紧凑,且是多层布置,尤其是电器室由于受机械部分制约分布更加分散,往往被分割为多个且布置在不同的平台上。炼焦车辆结构复杂,动作多样,动力回路与控制回路遍布车上的各个部分,为了适应电器室的分布,减少安装空间,减少硬线布线、减少故障点,降低故障率、使故障诊断更加方便、简单、准确和直观,提高抗干扰能力和提高控制精度,广泛采用现场总线技术显得十分必要。 ProfiBus-DP是fieldBus应用于高速设备分散控制或自动化控制的现场级总线,具有严格的认证规范、开放的标准、众多厂商的支持和不断发展的应用行规,现已得到广泛的运用,几乎所有的常用变频器都支持该总线 系统组成
一、异步电机DTC控制 1.1控制思想 在电动机实际运行中,保持定子磁链幅值为额定值,以便充分利用电动机铁心;转子磁链幅值由负载决定。通过控制定子磁链与转子磁链之间的夹角即转矩角可以控制电动机的转矩。在直接转矩控制中,其基本控制方法就是通过选择电压空间矢量来控制定子磁链的旋转速度,控制定子磁链走走停停,以改变定子磁链的平均旋转速度的大小,从而改变转矩角的大小,以达到控制电动机转矩的目的。 直接转矩控制采用两个滞环比较,分别比较定子给定磁链和实际磁链、给定转矩和实际转矩的差值,然后,根据这两个差值查询逆变器电压矢量开关表得到需要加在异步电动机上的恰当的电压开关矢量,最后通过PWM逆变器来实现对异步电动机的控制。整个控制系
传统的直接转矩控制算法 /
1 变频器的应用 变频器是利用电力电子半导体器件的通断作用将工频电源变换为另一频率的电能的控制装置。利用变频器拖动电动机,起动电流小,可以实现软起动和大范围的无级调速,方便地对电机转速进行控制,使得电动机的运行符合实际工况需求,节能效果显著,因而变频器在工业生产中得到了越来越广泛的应用。变频器属于电力电子装置,构成它的电子元器件、计算机芯片、数字电路等均易受外界的电磁干扰(EMI),因此,变频器投入电网后,应的抗干扰设计技术(即电磁兼容性EMC)也已经变得越来越重要。 2 电磁兼容 电磁兼容EMC(Electro Magnetic Compatibility)是指电气设备或系统在所处的电磁环境中可靠
变频器是一种控制电动机转速和性能的电气设备,在工业自动化控制领域得到广泛应用。它能够控制交流电动机的输出频率和电压,进而控制电动机的转速和扭矩,从而实现设备的智能化、高效化和节能化控制。 变频器主要由输电部分、整流部分、逆变部分、控制电路等组成。输电部分将输入电网的电压(通常为380V/220V)通过变压器降压到所需的输入电压,整流部分将输入交流电转换为直流电,逆变部分又将直流电转换为高频交流电,控制电路则实现控制信号的路由和处理,从而控制变频器的输出。 变频器的主要功能是实现电机的变速控制、电量调节和市电过压、过载等保护功能。通过对变频器输出频率和电压的调节,能够实现电机在不同负载下的可靠性精确控制,同时实现多种电机的控
变频器缺相故障是常见的故障之一,要知道变频器产品中主要有单相220V与三相380V的区分,当然输入缺相检测只存在于三相的产品中。图1所示为变频器主电路,R、S、T为三相交流输入,当其中的一相因为熔断器或断路器的故障而断开时,便认为是发生了输入缺相故障。 图1 变频器主回路 变频器缺相故障除了输入缺相外,还有一种是输出缺相,这将直接导致电机缺相运行。缺相时,电机静止时启动,电机就转不起来。若是在运行中缺相十分危险,电机电流增大1.2倍,发热严重,震动加剧,急易烧坏电机。变频器通过检测输出电流,就可以判断三相输出是否缺相。 变频器输入缺相的检测方法 当变频器不发生缺相的正常情况下工作时,Udc上的电压如图2所示,一个工频周期内将有
缺相故障如何判断和维修? /
“玄铁杯”第三届RISC-V应用创新大赛—国产高性能RISC-V Linux开发板LicheePi 4A报名专场,万元奖金,邀您奔赴开源设计盛宴
有奖直播报名|Keysight World Tech Day 2023分论坛——汽车自动驾驶与新能源
影响语音芯片采样率三大因素主要有:采样的位数:采样位数能够理解为采集卡处理声响的解析度。这个数值越大,解析度就越高,录制和回放的声 ...
在上次的方案我有给大家介绍一款基于DSPG D7的4MIC降噪会议音响的方案,得到了很多客户的青睐,很多客户也立案做了很多项目,这里感谢各位 ...
现在的电子产品电路精细且复杂,对用在电路防护方面的电子元件的选型时需要多方面考虑。压敏电阻是限压型保护元器件,是工程师们常用到的一 ...
我们在使用电器时会发现手机、电视机、电冰箱等工作久了会发烫,但是当手机、电视机不工作时温度逐渐下降。这是为什么呢?其实温度升高和电 ...
该案例可实现图像 视频的跨屏拼接显示,即一个内容分成多个部分在多个屏幕上拼接显示完整;支持EDP、LVDS、MIPI、HDMI、DP等多种屏幕组合, ...
站点相关:嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科